Skip to main content

Dwdm exp6

 6. Demonstrate knowledge flow application on data sets


age

specticle_prescrip

astigmation

tear_prod_rate

contact_lenses

young

myopia

no

reduce

none

young

myopia

no

normal

soft

young

myopia

yes

reduce

none

young

myopia

yes

normal

hard

young

hypermertropia

no

reduce

none

young

hypermertropia

no

normal

soft

young

hypermertropia

yes

reduce

none

young

hypermertropia

yes

normal

hard

pre_pres_byopic

myopia

no

reduce

none

pre_pres_byopic

myopia

no

normal

none

pre_pres_byopic

myopia

yes

reduce

soft

pre_pres_byopic

myopia

yes

normal

hard

pre_pres_byopic

hypermertropia

yes

normal

none

pre_pres_byopic

hypermertropia

no

reduce

normal

pre_pres_byopic

hypermertropia

yes

reduce

normal

pre_pres_byopic

myopia

no

normal

none

pre_pres_byopic

myopia

yes

reduce

none

pres_byopic

hypermertropia

yes

normal

soft



1.Develop a knowledge flow layout for finding strong association rules by using, Apriori algorithm

Aim: Demonstration of association rule process on contactlens.arff using apriori algorithm.

 @relation contactlenses

@attribute age {young,pre_pres_byopic,pres_byopic}

@attribute specticle_prescrip {myopia,hypermertropia}

@attribute astigmation {yes,no}

@attribute tear_prod_rate {reduce,normal}

@attribute contact_lenses {none,soft,hard,normal}


@data

young,myopia,no,reduce,none

young,myopia,no,normal,soft

young,myopia,yes,reduce,none

young,myopia,yes,normal,hard

young,hypermertropia,no,reduce,none

young,hypermertropia,no,normal,soft

young,hypermertropia,yes,reduce,none

young,hypermertropia,yes,normal,hard

pre_pres_byopic,myopia,no,reduce,none

pre_pres_byopic,myopia,no,normal,none

pre_pres_byopic,myopia,yes,reduce,soft

pre_pres_byopic,myopia,yes,normal,hard

pre_pres_byopic,hypermertropia,yes,normal,none

pre_pres_byopic,hypermertropia,no,reduce,normal

pre_pres_byopic,hypermertropia,yes,reduce,normal

pre_pres_byopic,myopia,no,normal,none

pre_pres_byopic,myopia,yes,reduce,none

pres_byopic,hypermertropia,yes,normal,soft


Step1:open the data file in weka explorer it is presume the required data have described .

Step2: clicking an association up will bring up the Interface for association algorithm.

Step3:we use Apriori algorithm which is default algorithm 

Step 4: In order to change the parameter click on the text box immediately to the right of the choose button.

Step 5: : Now we click on start to rum the Apriori algorithm.

output: 

=== Run information ===

Scheme:       weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1

Relation:     contactlenses

Instances:    18

Attributes:   5

              age

              specticle_prescrip

              astigmation

              tear_prod_rate

              contact_lenses

=== Associator model (full training set) ===

Apriori

=======

Minimum support: 0.15 (3 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 11

Size of set of large itemsets L(2): 35

Size of set of large itemsets L(3): 17

Size of set of large itemsets L(4): 1

Best rules found:

 1. age=young contact_lenses=none 4 ==> tear_prod_rate=reduce 4    conf:(1)

 2. age=young tear_prod_rate=reduce 4 ==> contact_lenses=none 4    conf:(1)

 3. contact_lenses=hard 3 ==> astigmation=yes 3    conf:(1)

 4. contact_lenses=hard 3 ==> tear_prod_rate=normal 3    conf:(1)

 5. tear_prod_rate=normal contact_lenses=none 3 ==> age=pre_pres_byopic 3    conf:(1)

 6. tear_prod_rate=normal contact_lenses=hard 3 ==> astigmation=yes 3    conf:(1)

 7. astigmation=yes contact_lenses=hard 3 ==> tear_prod_rate=normal 3    conf:(1)

 8. contact_lenses=hard 3 ==> astigmation=yes tear_prod_rate=normal 3    conf:(1)

 9. age=pre_pres_byopic astigmation=no contact_lenses=none 3 ==> specticle_prescrip=myopia 3    conf:(1)

10. age=pre_pres_byopic specticle_prescrip=myopia astigmation=no 3 ==> contact_lenses=none 3    conf:(1)

Comments

Popular posts from this blog

DWDM (Basic statistical description of data)

Data structures: Introduction to Trees

Tree: The data in a tree are not stored in a sequential manner i.e., they are not stored linearly. Instead, they are arranged on multiple levels or we can say it is a hierarchical structure. For this reason, the tree is considered to be a non-linear data structure. KeyConcepts : Nodes : Individual units within the tree, each storing data and potentially linking to other nodes. Edges : Connections between nodes, representing relationships (parent-child, sibling, etc.). Root : The topmost node in the tree, from which all other nodes originate. Parent : A node that has one or more child nodes. Child : A node connected to a parent node. Leaf : A node with no children. Subtree : A portion of a tree that is itself a tree. Representation of tree: Binary search tree :

Hashing and hash functions

Types of hash functions